Dataset:
voc2012train datasetvoc2007train datasetvoc2007test datasetJPEGImages folder in voc2012train and voc2007train to Images folder as following:
├── Dataset
├── IMAGES
├── 0001.jpg
├── 0002.jpg
├── LABELS
├── 0001.txt
├── 0002.txt
├── train.txt
├── test.txt
Each label consists of class and bounding box information. e.g 0001.txt :
1 255 247 425 468
0 470 105 680 468
1 152 356 658 754
How to convert .xml files to .txt format?
config.py to convert VOC format to YOLO format labelsImplementation of YOLOv1 using PyTorch
Train:
Note: I trained the backbone on IMAGENET, around ~ 10 epochs, not sure how many it was but less then 20
python main.py --base_dir ../../Datasets/VOC/ --log_dir ./weights
usage: main.py [-h] --base_dir BASE_DIR --log_dir LOG_DIR [--init_lr INIT_LR] [--base_lr BASE_LR] [--momentum MOMENTUM] [--weight_decay WEIGHT_DECAY] [--num_epochs NUM_EPOCHS]
[--batch_size BATCH_SIZE] [--seed SEED]
Evaluation:
python eval.py
In evaluation.py, im_show=False change to True to see the results.
Evaluate the detection result...
aeroplane 0.57
bicycle 0.46
bird 0.38
boat 0.25
bottle 0.14
bus 0.53
car 0.48
cat 0.61
chair 0.18
cow 0.34
diningtable 0.44
dog 0.52
horse 0.52
motorbike 0.49
person 0.49
pottedplant 0.21
sheep 0.43
sofa 0.38
train 0.69
tvmonitor 0.40
mAP 0.426056536787907
Detection
detect.py