Image Pipeline
A complete pipeline for processing images with detection, recognition, and attribute analysis.
Basic Pipeline
import cv2
from uniface.attribute import AgeGender
from uniface.detection import RetinaFace
from uniface.recognition import ArcFace
from uniface.draw import draw_detections
# Initialize models
detector = RetinaFace()
recognizer = ArcFace()
age_gender = AgeGender()
def process_image(image_path):
"""Process a single image through the full pipeline."""
# Load image
image = cv2.imread(image_path)
# Step 1: Detect faces
faces = detector.detect(image)
print(f"Found {len(faces)} face(s)")
results = []
for i, face in enumerate(faces):
# Step 2: Extract embedding
embedding = recognizer.get_normalized_embedding(image, face.landmarks)
# Step 3: Predict attributes
attrs = age_gender.predict(image, face.bbox)
results.append({
'face_id': i,
'bbox': face.bbox,
'confidence': face.confidence,
'embedding': embedding,
'gender': attrs.sex,
'age': attrs.age
})
print(f" Face {i+1}: {attrs.sex}, {attrs.age} years old")
# Visualize
draw_detections(
image=image,
bboxes=[f.bbox for f in faces],
scores=[f.confidence for f in faces],
landmarks=[f.landmarks for f in faces]
)
return image, results
# Usage
result_image, results = process_image("photo.jpg")
cv2.imwrite("result.jpg", result_image)
Using FaceAnalyzer
For convenience, use the built-in FaceAnalyzer:
from uniface.analyzer import FaceAnalyzer
from uniface.attribute import AgeGender
from uniface.detection import RetinaFace
from uniface.recognition import ArcFace
import cv2
# Initialize with desired modules
detector = RetinaFace()
recognizer = ArcFace()
age_gender = AgeGender()
analyzer = FaceAnalyzer(
detector,
recognizer=recognizer,
age_gender=age_gender,
)
# Process image
image = cv2.imread("photo.jpg")
faces = analyzer.analyze(image)
# Access enriched Face objects
for face in faces:
print(f"Confidence: {face.confidence:.2f}")
print(f"Embedding: {face.embedding.shape}")
print(f"Age: {face.age}, Gender: {face.sex}")
Full Analysis Pipeline
Complete pipeline with all modules:
import cv2
import numpy as np
from uniface.attribute import AgeGender, FairFace
from uniface.detection import RetinaFace
from uniface.gaze import MobileGaze
from uniface.landmark import Landmark106
from uniface.recognition import ArcFace
from uniface.parsing import BiSeNet
from uniface.spoofing import MiniFASNet
from uniface.draw import draw_detections, draw_gaze
class FaceAnalysisPipeline:
def __init__(self):
# Initialize all models
self.detector = RetinaFace()
self.recognizer = ArcFace()
self.age_gender = AgeGender()
self.fairface = FairFace()
self.landmarker = Landmark106()
self.gaze = MobileGaze()
self.parser = BiSeNet()
self.spoofer = MiniFASNet()
def analyze(self, image):
"""Run full analysis pipeline."""
faces = self.detector.detect(image)
results = []
for face in faces:
result = {
'bbox': face.bbox,
'confidence': face.confidence,
'landmarks_5': face.landmarks
}
# Recognition embedding
result['embedding'] = self.recognizer.get_normalized_embedding(
image, face.landmarks
)
# Attributes
ag_result = self.age_gender.predict(image, face.bbox)
result['age'] = ag_result.age
result['gender'] = ag_result.sex
# FairFace attributes
ff_result = self.fairface.predict(image, face.bbox)
result['age_group'] = ff_result.age_group
result['race'] = ff_result.race
# 106-point landmarks
result['landmarks_106'] = self.landmarker.get_landmarks(
image, face.bbox
)
# Gaze estimation
x1, y1, x2, y2 = map(int, face.bbox)
face_crop = image[y1:y2, x1:x2]
if face_crop.size > 0:
gaze_result = self.gaze.estimate(face_crop)
result['gaze_pitch'] = gaze_result.pitch
result['gaze_yaw'] = gaze_result.yaw
# Face parsing
if face_crop.size > 0:
result['parsing_mask'] = self.parser.parse(face_crop)
# Anti-spoofing
spoof_result = self.spoofer.predict(image, face.bbox)
result['is_real'] = spoof_result.is_real
result['spoof_confidence'] = spoof_result.confidence
results.append(result)
return results
# Usage
pipeline = FaceAnalysisPipeline()
results = pipeline.analyze(cv2.imread("photo.jpg"))
for i, r in enumerate(results):
print(f"\nFace {i+1}:")
print(f" Gender: {r['gender']}, Age: {r['age']}")
print(f" Race: {r['race']}, Age Group: {r['age_group']}")
print(f" Gaze: pitch={np.degrees(r['gaze_pitch']):.1f}°")
print(f" Real: {r['is_real']} ({r['spoof_confidence']:.1%})")
Visualization Pipeline
import cv2
import numpy as np
from uniface.attribute import AgeGender
from uniface.detection import RetinaFace
from uniface.gaze import MobileGaze
from uniface.draw import draw_detections, draw_gaze
def visualize_analysis(image_path, output_path):
"""Create annotated visualization of face analysis."""
detector = RetinaFace()
age_gender = AgeGender()
gaze = MobileGaze()
image = cv2.imread(image_path)
faces = detector.detect(image)
for face in faces:
x1, y1, x2, y2 = map(int, face.bbox)
# Draw bounding box
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
# Age and gender
attrs = age_gender.predict(image, face.bbox)
label = f"{attrs.sex}, {attrs.age}y"
cv2.putText(image, label, (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
# Gaze
face_crop = image[y1:y2, x1:x2]
if face_crop.size > 0:
gaze_result = gaze.estimate(face_crop)
draw_gaze(image, face.bbox, gaze_result.pitch, gaze_result.yaw)
# Confidence
conf_label = f"{face.confidence:.0%}"
cv2.putText(image, conf_label, (x1, y2 + 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)
cv2.imwrite(output_path, image)
print(f"Saved to {output_path}")
# Usage
visualize_analysis("input.jpg", "output.jpg")
JSON Output
Export results to JSON:
import json
import numpy as np
def results_to_json(results):
"""Convert analysis results to JSON-serializable format."""
output = []
for r in results:
item = {
'bbox': r['bbox'].tolist(),
'confidence': float(r['confidence']),
'age': int(r['age']) if r.get('age') else None,
'gender': r.get('gender'),
'race': r.get('race'),
'is_real': r.get('is_real'),
'gaze': {
'pitch_deg': float(np.degrees(r['gaze_pitch'])) if 'gaze_pitch' in r else None,
'yaw_deg': float(np.degrees(r['gaze_yaw'])) if 'gaze_yaw' in r else None
}
}
output.append(item)
return output
# Usage
results = pipeline.analyze(image)
json_data = results_to_json(results)
with open('results.json', 'w') as f:
json.dump(json_data, f, indent=2)
Next Steps
- Batch Processing - Process multiple images
- Video & Webcam - Real-time processing
- Face Search - Build a search system
- Detection Module - Detection options
- Recognition Module - Recognition details