Quickstart
Get up and running with UniFace in 5 minutes. This guide covers the most common use cases.
Face Detection
Detect faces in an image:
import cv2
from uniface import RetinaFace
# Load image
image = cv2.imread("photo.jpg")
# Initialize detector (models auto-download on first use)
detector = RetinaFace()
# Detect faces
faces = detector.detect(image)
# Print results
for i, face in enumerate(faces):
print(f"Face {i+1}:")
print(f" Confidence: {face.confidence:.2f}")
print(f" BBox: {face.bbox}")
print(f" Landmarks: {len(face.landmarks)} points")
Output:
Visualize Detections
Draw bounding boxes and landmarks:
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
# Detect faces
detector = RetinaFace()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Extract visualization data
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
# Draw on image
draw_detections(
image=image,
bboxes=bboxes,
scores=scores,
landmarks=landmarks,
vis_threshold=0.6,
)
# Save result
cv2.imwrite("output.jpg", image)
Face Recognition
Compare two faces:
import cv2
import numpy as np
from uniface import RetinaFace, ArcFace
# Initialize models
detector = RetinaFace()
recognizer = ArcFace()
# Load two images
image1 = cv2.imread("person1.jpg")
image2 = cv2.imread("person2.jpg")
# Detect faces
faces1 = detector.detect(image1)
faces2 = detector.detect(image2)
if faces1 and faces2:
# Extract embeddings
emb1 = recognizer.get_normalized_embedding(image1, faces1[0].landmarks)
emb2 = recognizer.get_normalized_embedding(image2, faces2[0].landmarks)
# Compute similarity (cosine similarity)
similarity = np.dot(emb1, emb2.T)[0][0]
# Interpret result
if similarity > 0.6:
print(f"Same person (similarity: {similarity:.3f})")
else:
print(f"Different people (similarity: {similarity:.3f})")
Similarity Thresholds
> 0.6: Same person (high confidence)0.4 - 0.6: Uncertain (manual review)< 0.4: Different people
Age & Gender Detection
import cv2
from uniface import RetinaFace, AgeGender
# Initialize models
detector = RetinaFace()
age_gender = AgeGender()
# Load image
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
# Predict attributes
for i, face in enumerate(faces):
result = age_gender.predict(image, face.bbox)
print(f"Face {i+1}: {result.sex}, {result.age} years old")
Output:
FairFace Attributes
Detect race, gender, and age group:
import cv2
from uniface import RetinaFace, FairFace
detector = RetinaFace()
fairface = FairFace()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
for i, face in enumerate(faces):
result = fairface.predict(image, face.bbox)
print(f"Face {i+1}: {result.sex}, {result.age_group}, {result.race}")
Output:
Facial Landmarks (106 Points)
import cv2
from uniface import RetinaFace, Landmark106
detector = RetinaFace()
landmarker = Landmark106()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
if faces:
landmarks = landmarker.get_landmarks(image, faces[0].bbox)
print(f"Detected {len(landmarks)} landmarks")
# Draw landmarks
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), 2, (0, 255, 0), -1)
cv2.imwrite("landmarks.jpg", image)
Gaze Estimation
import cv2
import numpy as np
from uniface import RetinaFace, MobileGaze
from uniface.visualization import draw_gaze
detector = RetinaFace()
gaze_estimator = MobileGaze()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
for i, face in enumerate(faces):
x1, y1, x2, y2 = map(int, face.bbox[:4])
face_crop = image[y1:y2, x1:x2]
if face_crop.size > 0:
result = gaze_estimator.estimate(face_crop)
print(f"Face {i+1}: pitch={np.degrees(result.pitch):.1f}°, yaw={np.degrees(result.yaw):.1f}°")
# Draw gaze direction
draw_gaze(image, face.bbox, result.pitch, result.yaw)
cv2.imwrite("gaze_output.jpg", image)
Face Parsing
Segment face into semantic components:
import cv2
import numpy as np
from uniface.parsing import BiSeNet
from uniface.visualization import vis_parsing_maps
parser = BiSeNet()
# Load face image (already cropped)
face_image = cv2.imread("face.jpg")
# Parse face into 19 components
mask = parser.parse(face_image)
# Visualize with overlay
face_rgb = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
vis_result = vis_parsing_maps(face_rgb, mask, save_image=False)
print(f"Detected {len(np.unique(mask))} facial components")
Face Anonymization
Blur faces for privacy protection:
from uniface.privacy import anonymize_faces
import cv2
# One-liner: automatic detection and blurring
image = cv2.imread("group_photo.jpg")
anonymized = anonymize_faces(image, method='pixelate')
cv2.imwrite("anonymized.jpg", anonymized)
Manual control:
from uniface import RetinaFace
from uniface.privacy import BlurFace
detector = RetinaFace()
blurrer = BlurFace(method='gaussian', blur_strength=5.0)
faces = detector.detect(image)
anonymized = blurrer.anonymize(image, faces)
Available methods:
| Method | Description |
|---|---|
pixelate |
Blocky effect (news media standard) |
gaussian |
Smooth, natural blur |
blackout |
Solid color boxes (maximum privacy) |
elliptical |
Soft oval blur (natural face shape) |
median |
Edge-preserving blur |
Face Anti-Spoofing
Detect real vs. fake faces:
import cv2
from uniface import RetinaFace
from uniface.spoofing import MiniFASNet
detector = RetinaFace()
spoofer = MiniFASNet()
image = cv2.imread("photo.jpg")
faces = detector.detect(image)
for i, face in enumerate(faces):
result = spoofer.predict(image, face.bbox)
label = 'Real' if result.is_real else 'Fake'
print(f"Face {i+1}: {label} ({result.confidence:.1%})")
Webcam Demo
Real-time face detection:
import cv2
from uniface import RetinaFace
from uniface.visualization import draw_detections
detector = RetinaFace()
cap = cv2.VideoCapture(0)
print("Press 'q' to quit")
while True:
ret, frame = cap.read()
if not ret:
break
faces = detector.detect(frame)
bboxes = [f.bbox for f in faces]
scores = [f.confidence for f in faces]
landmarks = [f.landmarks for f in faces]
draw_detections(image=frame, bboxes=bboxes, scores=scores, landmarks=landmarks)
cv2.imshow("UniFace - Press 'q' to quit", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
Model Selection
For detailed model comparisons, benchmarks, and selection guidance, see the Model Zoo.
Quick recommendations:
| Task | Recommended Model | Alternative |
|---|---|---|
| Detection (balanced) | RetinaFace (MNET_V2) |
YOLOv5Face (YOLOV5S) |
| Detection (speed) | RetinaFace (MNET_025) |
SCRFD (SCRFD_500M) |
| Detection (accuracy) | SCRFD (SCRFD_10G) |
RetinaFace (RESNET34) |
| Recognition | ArcFace (MNET) |
AdaFace (IR_18) |
| Gaze | MobileGaze (RESNET34) |
MobileGaze (MOBILEONE_S0) |
| Parsing | BiSeNet (RESNET18) |
BiSeNet (RESNET34) |
Common Issues
Models Not Downloading
from uniface.model_store import verify_model_weights
from uniface.constants import RetinaFaceWeights
# Manually download a model
model_path = verify_model_weights(RetinaFaceWeights.MNET_V2)
print(f"Model downloaded to: {model_path}")
Check Hardware Acceleration
import onnxruntime as ort
print("Available providers:", ort.get_available_providers())
# macOS M-series should show: ['CoreMLExecutionProvider', ...]
# NVIDIA GPU should show: ['CUDAExecutionProvider', ...]
Slow Performance on Mac
Verify you're using the ARM64 build of Python:
Import Errors
# Correct imports
from uniface.detection import RetinaFace
from uniface.recognition import ArcFace
from uniface.landmark import Landmark106
# Also works (re-exported at package level)
from uniface import RetinaFace, ArcFace, Landmark106
Next Steps
- Model Zoo - All models, benchmarks, and selection guide
- API Reference - Explore individual modules and their APIs
- Tutorials - Step-by-step examples for common workflows
- Guides - Learn about the architecture and design principles