Landmarks
Facial landmark detection provides precise localization of facial features.
Available Models
| Model | Points | Size | Use Case |
|---|---|---|---|
| Landmark106 | 106 | 14 MB | Detailed face analysis |
5-Point Landmarks
Basic 5-point landmarks are included with all detection models (RetinaFace, SCRFD, YOLOv5-Face).
106-Point Landmarks
Basic Usage
from uniface import RetinaFace, Landmark106
detector = RetinaFace()
landmarker = Landmark106()
# Detect face
faces = detector.detect(image)
# Get detailed landmarks
if faces:
landmarks = landmarker.get_landmarks(image, faces[0].bbox)
print(f"Landmarks shape: {landmarks.shape}") # (106, 2)
Landmark Groups
| Range | Group | Points |
|---|---|---|
| 0-32 | Face Contour | 33 |
| 33-50 | Eyebrows | 18 |
| 51-62 | Nose | 12 |
| 63-86 | Eyes | 24 |
| 87-105 | Mouth | 19 |
Extract Specific Features
landmarks = landmarker.get_landmarks(image, face.bbox)
# Face contour
contour = landmarks[0:33]
# Left eyebrow
left_eyebrow = landmarks[33:42]
# Right eyebrow
right_eyebrow = landmarks[42:51]
# Nose
nose = landmarks[51:63]
# Left eye
left_eye = landmarks[63:72]
# Right eye
right_eye = landmarks[76:84]
# Mouth
mouth = landmarks[87:106]
5-Point Landmarks (Detection)
All detection models provide 5-point landmarks:
from uniface import RetinaFace
detector = RetinaFace()
faces = detector.detect(image)
if faces:
landmarks_5 = faces[0].landmarks
print(f"Shape: {landmarks_5.shape}") # (5, 2)
left_eye = landmarks_5[0]
right_eye = landmarks_5[1]
nose = landmarks_5[2]
left_mouth = landmarks_5[3]
right_mouth = landmarks_5[4]
Visualization
Draw 106 Landmarks
import cv2
def draw_landmarks(image, landmarks, color=(0, 255, 0), radius=2):
"""Draw landmarks on image."""
for x, y in landmarks.astype(int):
cv2.circle(image, (x, y), radius, color, -1)
return image
# Usage
landmarks = landmarker.get_landmarks(image, face.bbox)
image_with_landmarks = draw_landmarks(image.copy(), landmarks)
cv2.imwrite("landmarks.jpg", image_with_landmarks)
Draw with Connections
def draw_landmarks_with_connections(image, landmarks):
"""Draw landmarks with facial feature connections."""
landmarks = landmarks.astype(int)
# Face contour (0-32)
for i in range(32):
cv2.line(image, tuple(landmarks[i]), tuple(landmarks[i+1]), (255, 255, 0), 1)
# Left eyebrow (33-41)
for i in range(33, 41):
cv2.line(image, tuple(landmarks[i]), tuple(landmarks[i+1]), (0, 255, 0), 1)
# Right eyebrow (42-50)
for i in range(42, 50):
cv2.line(image, tuple(landmarks[i]), tuple(landmarks[i+1]), (0, 255, 0), 1)
# Nose (51-62)
for i in range(51, 62):
cv2.line(image, tuple(landmarks[i]), tuple(landmarks[i+1]), (0, 0, 255), 1)
# Draw points
for x, y in landmarks:
cv2.circle(image, (x, y), 2, (0, 255, 255), -1)
return image
Use Cases
Face Alignment
from uniface import face_alignment
# Align face using 5-point landmarks
aligned = face_alignment(image, faces[0].landmarks)
# Returns: 112x112 aligned face
Eye Aspect Ratio (Blink Detection)
import numpy as np
def eye_aspect_ratio(eye_landmarks):
"""Calculate eye aspect ratio for blink detection."""
# Vertical distances
v1 = np.linalg.norm(eye_landmarks[1] - eye_landmarks[5])
v2 = np.linalg.norm(eye_landmarks[2] - eye_landmarks[4])
# Horizontal distance
h = np.linalg.norm(eye_landmarks[0] - eye_landmarks[3])
ear = (v1 + v2) / (2.0 * h)
return ear
# Usage with 106-point landmarks
left_eye = landmarks[63:72] # Approximate eye points
ear = eye_aspect_ratio(left_eye)
if ear < 0.2:
print("Eye closed (blink detected)")
Head Pose Estimation
import cv2
import numpy as np
def estimate_head_pose(landmarks, image_shape):
"""Estimate head pose from facial landmarks."""
# 3D model points (generic face model)
model_points = np.array([
(0.0, 0.0, 0.0), # Nose tip
(0.0, -330.0, -65.0), # Chin
(-225.0, 170.0, -135.0), # Left eye corner
(225.0, 170.0, -135.0), # Right eye corner
(-150.0, -150.0, -125.0), # Left mouth corner
(150.0, -150.0, -125.0) # Right mouth corner
], dtype=np.float64)
# 2D image points (from 106 landmarks)
image_points = np.array([
landmarks[51], # Nose tip
landmarks[16], # Chin
landmarks[63], # Left eye corner
landmarks[76], # Right eye corner
landmarks[87], # Left mouth corner
landmarks[93] # Right mouth corner
], dtype=np.float64)
# Camera matrix
h, w = image_shape[:2]
focal_length = w
center = (w / 2, h / 2)
camera_matrix = np.array([
[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]
], dtype=np.float64)
# Solve PnP
dist_coeffs = np.zeros((4, 1))
success, rotation_vector, translation_vector = cv2.solvePnP(
model_points, image_points, camera_matrix, dist_coeffs
)
return rotation_vector, translation_vector
Factory Function
See Also
- Detection Module - Face detection with 5-point landmarks
- Attributes Module - Age, gender, emotion
- Gaze Module - Gaze estimation
- Concepts: Coordinate Systems - Landmark formats