Video by Yan Krukau: https://www.pexels.com/video/male-teacher-with-his-students-8617126/
This project focuses on head pose estimation using various deep learning models, including ResNet (18, 34, 50) and MobileNet v2. It builds upon 6DRepNet by incorporating additional pre-trained models and refined code to enhance performance and flexibility.
Date | Feature Description |
---|---|
2024-12-16 | 🔄 Updated Pre-trained Models: New weights for existing ResNet (18, 34, 50) and MobileNet (v2, v3) backbones, offering improved accuracy and efficiency. |
2024-12-16 | 🚀 Multi-GPU Training Support: Enabled distributed training across multiple GPUs for faster model training and improved scalability. |
2024-08-31 | 🧠Face Detection Integration: Sample and Computation Redistribution employed for efficient inference and processing in face detection tasks. |
2024-08-31 | 🔄 Pre-trained Models: Support for ResNet (18, 34, 50) and MobileNet (v2, v3) backbones for feature extraction and optimized performance across diverse applications. |
2024-08-31 | 🎯 Head Pose Estimation: Enhanced model architecture for precise head pose estimation, utilizing pre-trained backbones for robust and efficient performance. |
Model | Size | Yaw | Pitch | Roll | MAE |
---|---|---|---|---|---|
ResNet-18 | 43 MB | 4.5027 | 5.8261 | 4.2188 | 4.8492 |
ResNet-34 | 81.6 MB | 4.4538 | 5.2690 | 3.8855 | 4.5361 |
ResNet-50 | 91.3 MB | 3.5529 | 4.9962 | 3.4986 | 4.0159 |
MobileNet V2 | 9.59 MB | 5.6880 | 6.0391 | 4.4433 | 5.3901 |
MobileNet V3 small | 6 MB | 8.6926 | 7.7089 | 6.0035 | 7.4683 |
MobileNet V3 large | 17 MB | 5.6068 | 6.6022 | 4.9959 | 5.7350 |
git clone https://github.com/yakyo/head-pose-estimation.git
cd head-pose-estimation
pip install -r requirements.txt
Download weight files:
a) Download weights from the following links (Trained on 300W-LP and evaluated on AFLW200 dataset):
Model | Weights | Size |
---|---|---|
ResNet-18 | resnet18.pt | 42.7 MB |
ResNet-34 | resnet34.pt | 81.3 MB |
ResNet-50 | resnet50.pt | 90 MB |
MobileNet V2 | mobilenetv2.pt | 8.74 MB |
MobileNet V3 small | mobilenetv3_small.pt | 5.93 MB |
MobileNet V3 large | mobilenetv3_large.pt | 16.2 MB |
b) Run the command below to download weights to the weights
directory (Linux):
sh download.sh [model_name]
resnet18
resnet34
resnet50
mobilenetv2
mobilenetv3_small
mobilenetv3_large
Dataset folder structure:
data/
├── 300W_LP/
└── AFLW2000/
300W_LP
AFLW200
Note: DDP training is also supported. To use, add torchrun --nproc_per_node=num_gpus
python main.py --data data/300W_LP --network resnet18
resnet34
resnet50
mobilenetv2
mobilenetv3_small
mobilenetv3_large
main.py
arguments:
usage: main.py [-h] [--data DATA] [--epochs EPOCHS] [--batch-size BATCH_SIZE] [--network NETWORK] [--lr LR] [--num-workers NUM_WORKERS] [--checkpoint CHECKPOINT] [--lr-scheduler {StepLR,MultiStepLR}] [--step-size STEP_SIZE] [--gamma GAMMA] [--milestones MILESTONES [MILESTONES ...]] [--print-freq PRINT_FREQ] [--world-size WORLD_SIZE]
[--local-rank LOCAL_RANK] [--save-path SAVE_PATH]
Head pose estimation training.
options:
-h, --help show this help message and exit
--data DATA Directory path for data.
--epochs EPOCHS Maximum number of training epochs.
--batch-size BATCH_SIZE
Batch size.
--network NETWORK Network architecture, currently available: resnet18/34/50, mobilenetv2
--lr LR Base learning rate.
--num-workers NUM_WORKERS
Number of workers for data loading.
--checkpoint CHECKPOINT
Path to checkpoint to continue training.
--lr-scheduler {StepLR,MultiStepLR}
Learning rate scheduler type.
--step-size STEP_SIZE
Period of learning rate decay for StepLR.
--gamma GAMMA Multiplicative factor of learning rate decay for StepLR and ExponentialLR.
--milestones MILESTONES [MILESTONES ...]
List of epoch indices to reduce learning rate for MultiStepLR (ignored if StepLR is used).
--print-freq PRINT_FREQ
Frequency (in batches) for printing training progress. Default: 100.
--world-size WORLD_SIZE
Number of distributed processes
--local-rank LOCAL_RANK
Local rank for distributed training
--save-path SAVE_PATH
Path to save model checkpoints. Default: `weights`.
python evaluate.py --data data/AFLW200 --weights weights/resnet18.pt --network resnet18
resnet34.pt resnet34
resnet50.pt resnet50
mobilenetv2.pt mobilenetv2
mobilenetv3_small.pt mobilenetv3_small
mobilenetv3_large.pt mobilenetv3_large
evaluate.py
arguments:
usage: evaluate.py [-h] [--data DATA] [--network NETWORK] [--num-workers NUM_WORKERS] [--batch-size BATCH_SIZE] [--weights WEIGHTS]
Head pose estimation evaluation.
options:
-h, --help show this help message and exit
--data DATA Directory path for data.
--network NETWORK Network architecture, currently available: resnet18/34/50, mobilenetv2
--num-workers NUM_WORKERS
Number of workers for data loading.
--batch-size BATCH_SIZE
Batch size.
--weights WEIGHTS Path to model weight for evaluation.
detect.py --input assets/in_video.mp4 --weights weights/resnet18.pt --arch resnet18 --output output.mp4
detect.py
arguments:
usage: detect.py [-h] [--network NETWORK] [--input INPUT] [--view] [--draw-type {cube,axis}] --weights WEIGHTS [--output OUTPUT]
Head pose estimation inference.
options:
-h, --help show this help message and exit
--network NETWORK Model name, default `resnet18`
--input INPUT Path to input video file or camera id
--view Display the inference results
--draw-type {cube,axis}
Draw cube or axis for head pose
--weights WEIGHTS Path to head pose estimation model weights
--output OUTPUT Path to save output file